
  

  

Abstract— Brightness-mode (B-mode) ultrasound has been 
used to measure in vivo muscle dynamics for assistive devices.  
Estimation of fascicle length from B-mode images has now 
transitioned from time-consuming manual processes to 
automatic methods, but these methods fail to reach pixel-wise 
accuracy across extended locomotion. In this work, we aim to 
address this challenge by combining a U-net architecture with 
proven segmentation abilities with an LSTM component that 
takes advantage of temporal information to improve validation 
accuracy in the prediction of fascicle lengths. Using 64,849 
ultrasound frames of the medial gastrocnemius, we semi-
manually generated ground-truth for training the proposed U-
net-LSTM. Compared with a traditional U-net and a CNN-
LSTM configuration, the validation accuracy, mean square 
error (MSE), and mean absolute error (MAE) of the proposed 
U-net-LSTM show better performance (91.4%, MSE = 0.1±0.03 
mm, MAE = 0.2±0.05 mm). The proposed framework could be 
used for real-time, closed-loop wearable control during real-
world locomotion.  

I. INTRODUCTION 

As the field of wearable robotics moves toward dynamic 
real-world applications, the ability to continuously observe 
and respond to users’ neuromuscular state may be important 
for providing individualized and adaptive assistance. B-mode 
ultrasound has received attention as a low-cost, non-invasive, 
and mobile modality to estimate muscle force capacity, 
energy use, and force production [1], [2], [3]. Previously, we 
used B-mode imaging to estimate muscle force and develop 
an ankle exosuit muscle-based assistance strategy [1] (Fig. 1). 
The assistance profiles, derived from B-mode imaging and the 
individual’s biomechanics, reduced energy expenditure 
across tasks. Although the study demonstrated the benefits of 
muscle-based control, the B-mode image processing was 
performed offline and could not be used for real-time control. 
The investigation of more advanced techniques to analyze B-
mode images and extract muscle states in a reliable manner in 
real-time is still needed.   

The muscle states of most interest to be extracted from B-
mode image frames are the fascicle lengths and pennation 
angles. From these, researchers have estimated muscle force 
production [4]. Measurements of fascicle length changes have 
been traditionally quantified by manually identifying the 
fascicle intersection of the upper and lower aponeurosis as 
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two bright echogenic linear structures [5]. Pennation angles 
have then been defined as the angle between the fascicle and 
aponeurosis orientations [5]. However, such manual 
identification on a frame-by-frame basis is extremely time-
consuming, does not leverage the spatial resolution present in 
ultrasound images, and is prone to intra- and inter-rater 
variability, referring to the consistency or variability made by 
the same rater or observer or different raters or observers, 
respectively, when assessing the same [6].  

 
Fig. 1. Representative figure illustrating data collection on older adults, 

showing the ultrasound placement over the medial gastrocnemius muscles.  

Automated image analysis techniques have been 
developed to address these challenges. Initial work outlined 
fascicles based on pixel intensity to estimate muscle fiber 
orientation [7]. However, the technique is affected by the 
quality of the image frame and often requires image 
enhancement filters that can generate artifacts [8]. Optical 
flow, which estimates the motion of individual pixels on the 
sequence of images, can estimate fascicle length changes 
across frame sequences [9]. However, these models can 
generate errors when encountering large movements. 
UltraTrack is a semi-automated application commonly used 
to track fascicle lengths and pennation angles that rely on an 
affine optical flow model [6]. A significant drawback is its 
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tendency to accumulate frame-by-frame shifts [10]. It also 
relies on users' initial manual annotation, after which the optic 
flow model is applied, raising inter- and intra-operator 
variability that translates into inconsistent and unreliable 
fascicle tracking over long sequences [11].  

More recently, machine learning has presented the 
opportunity to automate the estimation of muscle architecture 
during dynamic motion tasks (e.g., ankle motion constrained, 
level-ground, and sloped walking at different speeds) [12], 
[13]. A preliminary attempt at using support vector regression 
[14] has the drawback of acting as a “black box,” not allowing 
researchers to visually confirm the fascicle being tracked, and 
presenting only moderate accuracy (average correlation 
between predicted values and the ground-truth, r = 0.65) [12].  

Efforts to determine muscle architecture from B-mode and 
capture the relationship between spatial and temporal 
structure using a more generalizable convolutional neural 
network (CNN) are presented in [15]. Several studies have 
also illustrated that a hybrid CNN-LSTM architecture has 
better performance in terms of visually learning time-
sequenced information than independent CNN and LSTM 
models [16], [17]. However, CNN-LSTM may not effectively 
capture the spatial features of the muscle fascicles in B-mode, 
especially when the images are of mid-to-low resolution [18]. 
Therefore, given the sequential nature of the continuous 
muscle recording in ultrasound imaging, a deep learning 
model that can read and visualize sequential data while 
interpreting long-term temporal dependencies would be 
preferred to increase robustness.  

U-net models have proven to be successful and accurate 
(98% validation accuracy over a fascicle classification task) 
for image segmentation of muscle fascicles, allowing 
researchers to validate the performances of the system by 
visually identifying fascicles and angles [19], [20]. However, 
the U-net architecture is designed for image segmentation, but 
it does not consider long-term temporal dependencies, which 
is an important aspect of B-mode images [13]. U-net 
architectures are sensitive to variability, and their 
performance degrades dramatically when the training set 
comes from one participant and the validation set comes from 
a different participant [21].   

In this article, we propose a deep U-shaped network-
LSTM (U-net-LSTM) framework for the time-sequenced 
prediction of muscle fascicles. The main contributions of the 
presented work are: 

A deep U-net-LSTM framework that is able to incorporate 
long-term temporal dependencies of B-mode images into the 
segmentation process. This allows for more accurate 
segmentation of the fascicle being tracked. 

A framework that could improve generalizability over 
input images from different participants and tasks compared 
to standard U-nets, that learns and adapts to the temporal 
characteristics of the muscle fascicles over time. 

 
In the next sections, the work is organized as follows: 

Section II describes the methodology, including the dataset 
used in the study and the proposed U-net-LSTM framework. 
Section III illustrates the valuation results in terms of training 
and validation accuracy, mean square error (MSE), and mean 
absolute error (MAE) of the proposed deep U-Net-LSTM 
framework, comparing its performance against that of other 
deep learning frameworks. Section IV discusses the strengths 
and limitations of the proposed methodology. Finally, Section 
V concludes with an extension of the approach and future 
directions. 

II. METHODS 

Image frames are labeled using a combination of manual 
fascicle detection to generate binary masks and UltraTrack [6] 
applied on a small sub-section of the recording to avoid spatial 
drift [22]. Next, the U-net-LSTM network is trained and 
tested to estimate the fascicle lengths (Fig. 2). 

A.  Dataset and Labelling 
The dataset [1] contained 64,849 image frames from nine 

healthy participants walking on a treadmill, as illustrated in 
Fig. 2 (a), on level ground at walking speeds of 1.00, 1.25, 
1.5, and 1.75 m/s, and at 5.71° (10% incline) at 1.25 m/s, 
using an instrumented treadmill (Bertec, Columbus, OH, 
USA; 1200 Hz) that measured ground reaction forces. 
Participants wore a MicroUs Telemed ultrasound transducer 
that captured B-mode images of the medial gastrocnemius 
muscle with a 75 mm probe and a 5 MHz center frequency. 

Fig. 2. The proposed framework where an ultrasound probe is placed over the medial gastrocnemius muscle as users walk at varying speeds (1.00, 1.25, 
1.5, and 1.75 m/s) and tasks (level ground and incline) (a), the data is labelled based on pre-recorded heel strikes (b), and the U-net-LSTM architecture 
extracts the fascicles lengths compared against the labelled sequence (c).  

 

                                    (a)                                                                                 (b)                                                                        (c) 



  

The study is approved by the Harvard Longwood Campus 
Institutional Review Board, protocol number IRB14-3608s. 
All methods are carried out in accordance with the approved 
study protocol and written informed consent was obtained 
prior to the start of the study for all participants.  

The labeling approach aimed to generate ground-truth 
masks of the fascicle lengths to train the U-net-LSTM 
framework, defined by selecting pixels that belonged to 
muscle fascicles. A combination of manual labeling and semi-
automated labeling (with UltraTrack) is utilized. The division 
into manual labeling and semi-automated labeling for 60,549 
frames is done to minimize the spatial drift caused by the affine 
optical flow introduced by UltraTrack over longer sequences. 
Based on pre-recorded heel strikes, each sequence of a 
participant walking (on average 1441 ultrasound frames) is 
divided into nine smaller sub-sequences. We manually 
segmented the first image frames of the nine sequences for 
each participant and task individually, to mimic the gold-
standard manual labeling process. Then, we continued labeling 
in a more sustainable way using UltraTrack. The masks are 
then reconstructed based on the manually identified fascicles 
and the output fascicle length values from UltraTrack to 
generate the masks.  

To ensure that the labeling is appropriate, all the fascicle 
lengths partitioned by the pre-recorded heel strikes are plotted 
following the approach proposed by Lai et al. [23] to confirm 
correct labeling, as illustrated in Fig. 2 (b). 

B. U-net-LSTM framework 

Fig. 3. The proposed deep U-Net-LSTM framework. 

The deep U-net-LSTM framework is designed to predict 
time-sequenced fascicle lengths from B-mode ultrasound 
image frames. It combines a U-shaped network [22], two 
LSTM units [24], and a skip connection (Fig. 3). The U-shaped 

framework is made of a contracting (or encoding) path and an 
expansive (or decoding) path. The contracting path is utilized 
to extract complex features and follows the architecture of a 
convolutional network. It is made of two 3×3 unpadded 
convolutions, each followed by a rectified linear unit (ReLU) 
activation function and a 2x2 max pooling operation that 
enables downsampling; the number of feature channels 
doubles after the max pooling operation.  

The input layer of the encoding path accepts time-
sequenced images as inputs. To reshape the output of the 
convolutional network layers into a format that can be fed into 
the LSTM layers, from a three-dimensional tensor to a two-
dimensional matrix, a global average pooling (GAP) layer is 
used to reduce the dimensions of input images and prevent 
overfitting in the framework.  

The LSTM section is placed between the contracting and 
the extensive paths and is used to learn temporal information. 
This is composed of two LSTM layers connected in series, 
with 512 hidden layers each. In the first LSTM layer, the 
return_sequences parameter is set to True, meaning that the 
layer can output a sequence of hidden states that represent the 
temporal features of the input data. These hidden states are 
then fed into the second LSTM layer to further capture the 
temporal dependencies in the data. The return_sequences 
parameter of the second LSTM layer is then set to False, 
meaning that only the last predicted vectors of the LSTM layer 
are outputs. After the two LSTM layers are processed in series, 
a reshape function is used to transform the shape of the output 
of the LSTM layers and prepare it for further processing in 
downstream layers. 

The skip connection section sends more high-level 
semantics to the expansive path. For instance, as the conv10 
layer and the conv16 layer are in symmetry with the same size 
feature map, the time series features output by the conv10 
layer are sent to the conv16 layer. After the channels 
concatenate, the shape will change. 

Finally, the expansive path recovers the vectors of the 
same size as the input by upsampling. The expansive path 
consists of a 2×2 upsampling layer, and two 3×3 convolutions 
followed by a ReLU activation function. 

C. Training and Validation 
The training and validation procedures of the proposed 

framework for fascicle length prediction are summarized as 
follows: 

1. Each B-mode ultrasound image frame is imported and 
resized to 512 x 512 pixels from the original resolution of 
581x 681 pixels to build a database for training and 
validation (Fig. 4). Once resized, the frames are labeled, 
based on pre-recorded heel-strikes, as described above, to 
generate the binary masks to train the proposed U-net-
LSTM (Fig. 4). The imported image frames are split 
between training and validation with an 80:20 ratio. 

2. The training involves forward-propagating image frames 
through the U-net-LSTM, calculating the loss between the 
predicted fascicle lengths and the labeled fascicle lengths, 
and back-propagating to update the model parameters. 
This study utilizes the Adam optimizer [25] to adjust the 
weights. To prevent overfitting in the training process, 



  

data augmentation techniques, including spatial cropping 
and rotation, are used. The total number of epochs is set 
to 120, and the initial learning rate is 0.001. The 
environments are a Google NVIDIA T4 Tensor Core 
GPU [26], Python (Python Software Foundation, version 
3.7), and PyTorch [27]. 

3. The output images from the U-net-LSTM are then 
extracted (Fig. 4). Then two endpoints of each fascicle in 
the segmented images are identified and the distance 
between them is measured to obtain the fascicle length. 
This process is repeated for each segmented image in the 
output from the U-net-LSTM, and the calculated fascicle 
lengths are combined to obtain the fascicle lengths 
estimate for the full sequence over time (Fig. 4).  

4. After the training to generate the output images, the U-
net-LSTM framework’s performances are evaluated. The 
validation accuracy, as a common metric to assess the 
correctly classified pixels in the segmentation map, is 
considered. To evaluate the framework’s performance in 
mm, the mean absolute error (MAE) and mean squared 
error (MSE), which are more sensitive to individual pixel 
values, are also considered. The calculation formulas are:  

 MSE = !
"
∑ &𝜗#−𝜗)#*

$"
#%!  (1) 

 
 MAE = !

"
∑ ,𝜗#−𝜗)#,"
#%!  (2) 

 
where 𝑛 represents the number of samples (total number 
of pixels over the sequence), 𝑖 represents the ranges of 
samples pixels across time,	𝜗# the ground-truth masks, 
and 𝜗)# the predicted result. 

 
Fig. 4. An example of the original B-mode ultrasound image frame (a); the 
segmented mask (ground-truth) (b); the output image from the U-net-LSTM 
framework with the red line visualizing the fascicle predicted (c); 
representation of the two reconstructed fascicle length sequences over time-
based on individual output images (the arrow that goes from the output of the 
U-net-LSTM (c) to one dot value of the scatter plot shows that to each output 
frame from the U-net-LSTM corresponds a dot of the scatter plot) (d). This 
example shows a single fascicle for clarity; typical frames include dozens of 
labeled fascicles. 

D. Comparison with other frameworks 
An ablation study is conducted, where individual 

components of the proposed U-net-LSTM framework are 
removed to evaluate their contribution to the overall 
performance. The ablation study focused on evaluating the 
influence of two components, the skip connection 
components of the U-net-LSTM, as in traditional U-net [20], 
and the LSTM units of the U-net-LSTM, as in a conventional 
CNN-LSTM structure [15]. To do so, the performance of the 
U-net-LSTM are contrasted with those of a traditional U-net 
by removing the series of the two LSTMs and with those of a 
conventional CNN-LSTM by replacing the convolutional 
layers to enable sequences of images as input instead of 
individual images. 

III. RESULTS 

The proposed deep U-net-LSTM framework trained on 
120 epochs for eight participants walking on a treadmill, as in 
Fig. 2 (a), on level ground at walking speeds of 1.00, 1.25, 1.5, 
and 1.75 m/s, and at 5.71° (10% incline) at 1.25 m/s presents 
training and validation accuracy of 98.2% and 91.4%, 
respectively (Fig. 5). The average MSE and MAE across 
participants and tasks with their standard deviations (SD) for 
the U-net-LSTM are 0.1 ± 0.03mm and 0.2 ± 0.05mm, 
respectively. The average detection time, as to the time it takes 
for the U-net-LSTM framework to extract fascicle information 
from a full sequence of participants' walking tasks, is 0.35 
seconds.  

The results of the ablation process that removed 
components of the U-net-LSTM to evaluate the individual 
components’ overall contribution to the proposed framework’s 
performance are shown in Table I. Overall, accuracy, MSE, 
and MAE are all worse if any of the components are omitted 
from the framework. The MSE and MAE across participants 
for each walking condition for the ablation study are presented 
in Table II. Again, the removal of any component from the 
framework results in a steep decline in performance for all 
walking conditions.  

 
Fig. 5. The proposed U-net-LSTM framework training accuracy and loss 
curves for 120 epochs. 

A representative fascicle length estimate from the various 
configurations for a randomly selected participant and walking 
task in the validation set is illustrated in Fig. 6. Here, the 
fascicle lengths of each segmented image frame in output from 
the U-net-LSTM framework and the U-net are measured using 



  

the distance between the two endpoints and computed for the 
full B-mode image sequence.   

TABLE I.  ABLATION COMPARISON BETWEEN THE PROPOSED U-NET-
LSTM FRAMEWORK, A CNN-LSTM, AND A U-NET. 

 
 

Frameworks 

Dataset Accuracy  
 
 MSE ± SD 
(mm) 

 
 
MAE ± 
SD 
(mm) 
 

Training 
(%)  

Validation 
(%) 

Traditional 
CNN-LSTM 
(+LSTM)  
 

85 73 5±0.67 3±0.62 

Traditional  
U-net (+Skip 
connection 
component)  
 

91 59 4.2±0.4 1.9±0.71 

Proposed  
U-net-LSTM 
(+LSTM + skip 
connection 
component) 

98.2 91.4 0.1±0.03 0.2±0.05 

 

 
Fig. 6. A comparison of the fascicles in output from the proposed U-net-
LSTM framework (in green), with a traditional U-net and CNN-LSTM of 
fascicle lengths from randomly selected participant 2 when walking on level 
ground at 1.25 m/s. 

TABLE II.  MEAN ABSOLUTE ERRORS AND MEAN SQUARED ERRORS (IN 
MILLIMETERS) FOR DIFFERENT DEEP LEARNING FRAMEWORKS ACROSS 

WALKING TASKS. 

 
 
Frameworks  

 
Walking velocities (m/s) 

 
 
Incline  
1.25m/s 1.00 1.25 1.50 1.75 

 

Traditional 
CNN-LSTM  
(+LSTM) 
 

MSE 4.9 4.2 6.2 6.1 5.3 

MAE 2.8 3.2 3.1 3.6 2.4 

 

Traditional U-
net (+Skip 
connection 
component) 
 

MSE 2.9 5.1 4.7 6.5 3.1 

MAE 1.3 0.5 1.8 2.1 2 

 

Proposed  
U-net-LSTM 
(+LSTM + skip 
connection 
component) 

MSE 0.4 0.8 0.05 0.7 0.1 

MAE 0.15 0.1 0.05 0.2 0.3 

IV. DISCUSSION 
This article proposes a deep U-net-LSTM framework that 

aims to incorporate temporal information to improve estimates 
of fascicle lengths. The framework is made of a deep U-shaped 
network, two LSTM units in series, and a skip connection 
component. The LSTM units are used to model the temporal 

dynamics of the B-mode ultrasound video recordings by 
selectively remembering and forgetting fascicle length 
information from previous time steps. In comparison with a 
traditional U-net [20] and a CNN-LSTM [15], the proposed 
framework showed greatly improved performance in terms of 
validation accuracy, MSE, and MAE. 

Our experiments illustrated that it is possible to detect and 
visualize fascicle architectures across two new participants 
and tasks (only used during the validation phase) when 
analyzing B-mode ultrasound frames. The predicted results for 
the validation set from the U-net-LSTM are very close to the 
ground-truth results, indicating that the proposed framework 
may have good stability to predict the results of additional 
future timesteps for participants on which it is not trained. 
Compared with the traditional U-net [20] and CNN-LSTM 
[15], the U-net-LSTM shows that the validation accuracy 
improves from 59% and 73% to 91.4%, respectively, and the 
MSEs and MAEs are reduced by one order of magnitude with 
the proposed approach.  

The results show that across frameworks, the performance 
generally degrades with an increase in walking speed, while 
incline walking does not affect the performance of the deep 
learning frameworks. This is expected as the difference 
between frames increases as walking speeds increase. The 
higher validation accuracy and lower MSE and MAE values 
suggest that the proposed U-net-LSTM framework could 
generalize better to unseen data compared to the traditional U-
net and CNN-LSTM, suggesting that the U-net-LSTM can be 
more effective at predicting and modeling temporal sequential 
changes in fascicle lengths over time.  

The ablation process shows that when the LSTM 
component is added, the mean MSE and MAE on the 
validation datasets are reduced, which verifies the 
effectiveness of the LSTM part in the proposed framework. 
When the skip connection part is added, the mean MSE and 
MAE are also reduced, which verifies the effectiveness of the 
skip connection part. These results suggest that together, the 
skip connection component and LSTM units positively impact 
the validation accuracy of the proposed U-net-LSTM. When 
both parts are added, the proposed framework achieves the 
best performance in terms of the selected evaluation criteria 
based on the validation dataset. 

Although the CNN-LSTM framework presents good 
training and validation accuracy, comparable with that of the 
U-net-LSTM, it also presents higher errors. This may be 
related to the fact that a CNN-LSTM framework is usually 
designed to capture temporal dependencies, while U-Net-
LSTM models consider both temporal dependencies and 
image segmentation features. The proposed U-net-LSTM 
leverages the strength of a traditional U-net to conduct 
segmentation on an image and then passes the segmented 
image through an LSTM network to capture the temporal 
dependencies between frames in a sequence. This highlighted 
the strength of the proposed framework. 

The proposed approach also facilitates interpretability, due 
to visualization of the segmentation results. This allows users 
to immediately confirm the quality of the output segmentations 
by simply examining ultrasound images with superimposed 
segmentation results, as illustrated in Fig. 4(c). This can help 



  

with debugging and validation, which could be particularly 
important for subjects with musculoskeletal pathologies [28] 
or for potential real-time control applications. 

We acknowledge that partial manual fascicle detection used 
to train the U-net-LSTM, combined with UltraTrack, can lead 
to errors in the labeled dataset. Instead of labor-intensive 
manual labeling, which would take approximately eight hours 
per participant per task, the proposed labeling approach takes 
approximately 20 minutes for one participant across all tasks, 
and for this reason, it was preferred to generate the labeled 
ground-truth. Also, the validation of the proposed framework 
on different populations can be a preferred strategy to validate 
the proposed method and will be performed in future 
investigations. The average detection time, which refers to the 
time it takes for the proposed U-net-LSTM framework to 
extract fascicle lengths from a participant's task, is 0.35s, 
which suggests that it is possible to achieve real-time 
prediction through optimization of the approach so that the 
proposed U-net-LSTM framework can be evaluated in real-
world human-in-the-loop assistance deployments in future 
investigations. 

V. CONCLUSION 
This paper presents a framework for autonomous fascicle 

length detection from B-mode ultrasound. It combines a U-net 
architecture for good segmentation performance with an 
LSTM component that considers temporal information to 
improve accuracy. The proposed framework provides accurate 
pixel-wise fascicle identification. Preliminary execution time 
estimates suggest that this framework may be useful for 
muscle-driven closed-loop control and visualization. In future 
work, we aim to test the framework for the development of 
exoskeleton assistance profiles tailored to the participant's 
individual biomechanics and adjusted to the specific task. 
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